AP/TS EAMCET 2022 FREE ONLINE CLASSES

Online classes will be in both english and telugu languages.

The Way Get Started Is To Quit Talking And Begin Doing.

The Pessimist Sees Difficulty In Every Opportunity. The Optimist Sees Opportunity In Every Difficulty.

Tuesday 29 June 2021

AP EAPCET 2021 30% DELETED SYLLABUS ZOOLOGY




  






Note: Deleted topics are mentioned red in colour for easy understanding. 

πŸ‘‰πŸ‘‰

CLICK HERE TO DOWNLOAD PDF  

SUBJECT: ZOOLOGY 

Zoology-I: Intermediate First Year

 

UNIT-I: ZOOLOGY - Diversity of Living World:

What is life?; Nature, Scope & meaning of zoology; Branches of Zoology; Need for classification- Zoos as tools for study of taxonomy; Basic principles of Classification: Biological system of classification- (Phylogenetic classification only); Levels or Hierarchy of classification; Nomenclature - Bi &Trinominal; Species concept; Kingdom Animalia; Biodiversity- Meaning and distribution, Genetic diversity, Species diversity, Ecosystem diversity(alpha,beta and gama), other attributes of biodiversity, role of biodiversity, threats to biodiveristy, methods of conservation, IUCN Red data books, Conservation of wild life in India -Legislation, Preservation, Organisations, Threatened species.

 

UNIT-II: STRUCTURAL ORGANIZATION IN ANIMALS:

Levels of organization, Multicellularity: Diploblastic & Triploblastic conditions; Asymmetry,Symmetry: Radial symmetry, and Bilateral symmetry (Brief account giving one example for each type from the representative phyla); Acoelomates, Pseudocoelomates and Eucoelomates: Schizo&Entero coelomates (Brief account of formation of coelom); Tissues: Epithelial, Connective, Muscular and Nervous tissues.


πŸ‘‡πŸ‘‡Click on below image to install our app and practice mock tests. πŸ‘‡



 









UNIT-III: ANIMAL DIVERSITY-I: INVERTEBRATE PHYLA:

General Characters –Classification up to Classes with two or three examples – (Brief account only). Porifera; Cnidaria; Ctenophora; Platyhelminthes; Nematoda; Annelida (Include Earthworm as a type study adhering to NCERT text book); Arthropoda; Mollusca; Echinodermata; Hemichordata.

 

UNIT-IV: ANIMAL DIVERSITY-II: PHYLUM: CHORDATA:

General Characters – Classification up to Classes - (Brief account only with two or three examples). Phylum : Chordata; Sub phylum: Urochordata; Sub phylum: Cephalochordata; Sub phylum : Vertebrata; Super class: Agnatha, Class Cyclostomata; Super class: Gnathostomata, Super class pisces, Class: Chondricthyes, Class: Osteichthyes; Tetrapoda, Class: Amphibia (Include Frog as a type study adhering to NCERT text book), Class: Reptilia, Class: Aves, Class: Mammalia.

 

UNIT-V: LOCOMOTION & REPRODUCTION IN PROTOZOA:

Locomotion: Definition, types of locomotor structures pseudopodia (basic idea of pseudopodia without going into different types), flagella & cilia (Brief account giving two examples each); Flagellar & Ciliary movement- Effective & Recovery strokes in Euglena, Synchronal & Metachronal movements in Paramecium; Reproduction: Definition, types. Asexual Reproduction: Transeverse binary fission in Paramecium & Longitudinal binary fission in Euglena. Multiple fission, Sexual Reproduction.

 

UNIT-VI: BIOLOGY IN HUMAN WELFARE:

Parasitism and parasitic adaptation; Health and disease: introduction; Life cycle, Pathogenecity, Treatment & Prevention (Brief account only) 1. Entamoeba histolytica 2. Plasmodium vivax 3. Ascaris lumbricoides 4. Wuchereriabancrofti; Brief account ofpathogenecity, treatment & prevention of Typhoid, Pneumonia, Common cold, & Ring worm; Drugs and Alcohol abuse.

 

UNIT-VII: PERIPLANETA AMERICANA (COCKROACH):

Habitat and habits; External features; Locomotion; Digestive system; Respiratory system; Circulatory system; Excretory system; Nervous system - sense organs, structure of ommatidium; Reproductive system.

 

UNIT-VIII: ECOLOGY & ENVIRONMENT:

Organisms and Environment: Ecology, population, communities, habitat, niche, biome and ecosphere (definitions only); Ecosystem: Elementary aspects only, Abiotic factors- Light, Temperature & Water (Biological effects only), Ecological adaptations; Population interactions; Ecosystems: Types, Components, Lake ecosystem; Food chains,  Food web, Productivity and Energy flow in Ecosystem,

Ecological pyramids - Pyramids of numbers, biomass and energy; Nutritient cycling - Carbon, Nitrogen & Phosphorous cycles (Brief account); Population attributes: Growth, Natality and Mortality, Age distribution, Population regulation; Environmental issues.

Zoology-II: Intermediate Second Year

πŸ‘‡πŸ‘‡Click on below image to install our app and practice mock tests. πŸ‘‡



 






 



UNIT-I:HUMAN ANATOMY AND PHYSIOLOGY-I:

I-                   A)Digestion and absorption: Alimentary canal and digestive glands; Role of digestive enzymes and gastrointestinal hormones; Peristalsis, digestion, absorption and assimilation of proteins, carbohydrates and fats, egestion,Calorific value of proteins, carbohydrates and fats; Nutritional disorders: Protein Energy Malnutrition (PEM), Disorders of digestive system- indigestion, constipation, vomiting, jaundice, diarrhea, kwashiorkor.

 I-B) Breathing and Respiration: Respiratory organs in animals; Respiratory system in humans; Mechanism of breathing and its regulation in humans - Exchange of gases, transport of gases and regulation of respiration, Respiratory volumes; Respiratory disorders: Asthma, Emphysema, Occupational respiratory disorders - Asbestosis, Silicosis, Siderosis, Black Lung Disease in coal miners.

 

UNIT-II:HUMAN ANATOMY AND PHYSIOLOGY-II:

II-A)        Body Fluids and Circulation: Clotting of blood; Human circulatory system - structure of human heart and blood vessels; Cardiac cycle, cardiac output, double circulation, regulation of cardiac activity; Disorders of circulatory system: Hypertension, coronary artery disease, angina pectoris, heart failure.

II-B)         Excretory products and their elimination: Modes of  excretion- Ammonotelism,  Ureotelism,  Uricotelism, Human excretory system - structure of kidney and nephron; Urine formation, osmoregulation; Regulation of kidney function -Renin-Angiotensin - Aldosterone system, Atrial Natriuretic Factor, ADH and diabetes insipidus; Role of other organs in excretion; Disorders: Uraemia, renal failure, renal calculi, nephritis, dialysis using artificial kidney.

 

UNIT-III:HUMAN ANATOMY AND PHYSIOLOGY-III:

III-             A)Muscular and Skeletal system: Skeletal muscle - ultra structure; Contractile proteins & muscle contraction, Skeletal system and its functions; Joints. Disorders of the muscular and skeletal system:  myasthenia gravis, tetany, muscular dystrophy, arthritis, osteoporosis, gout, regormortis.

 III-B) Neural control and co-ordination: Nervous system in human beings - Central nervous system, Peripheral nervous system and Visceral nervous system, Generation and conduction of nerve impulse; Reflex action; Sensory perception; Sense organs; Brief description of other receptors; Elementary structure and functioning of eye and ear.

 

UNIT-IV:HUMAN ANATOMY AND PHYSIOLOGY-IV:

IV-A)      Endocrine system and chemical co-ordination: Endocrine glands and hormones; Human endocrine system - Hypothalamus, Pituitary, Pineal, Thyroid, Parathyroid, Adrenal, Pancreas, Gonads; Mechanism of hormone action, Role of hormones as messengers and regulators; Hypo and Hyper activity and related disorders: Common disorders - Dwarfism, acromegaly, cretinism, goiter, exophthalmic goiter, diabetes, Addison’s disease, Cushing’s syndrome.

IV-B)      Immune system: Basic concepts of Immunology - Types of Immunity - Innate Immunity, Acquired Immunity, Active and Passive Immunity, Cell mediated Immunity and Humoral Immunity, Interferon, HIV and AIDS.

 

UNIT-V:HUMAN REPRODUCTION:

V-A)         Human Reproductive System: Male and female reproductive systems; Microscopic anatomy of testis & ovary; Gametogenesis, Spermatogenesis & Oogenesis; Menstrual cycle; Fertilization, Embryo development upto blastocyst formation, Implantation; Pregnancy, placenta formation, Parturition, Lactation.

V-B)         Reproductive Health: Need for reproductive health and prevention of sexually transmitted diseases (STD); Birth control - Need and methods, contraception and Pharmacy termination of pregnancy (MTP); Amniocentesis; infertility and assisted reproductive technologies - IVF-ET, ZIFT, GIFT.

 

UNIT-VI:GENETICS:

Heredity and variations. Mendel’s laws of inheritance with reference to Drosopila(Drosophila melanogaster- Grey, Black body colour; Long, Vestigial wings), Pleiotropy, Multiple alleles and inheritance blood groups, Rh-factor, Codominance ( Blood groups as example), elementary idea of polygenic inheritance, skin colour in humans, sex- determination- in humans, birds, Fumea, genic balance theory of sex detrmination, Haplodiploidy in honey bees; Sex linked inheritance- Haemophilia and colorblindness, Mendelian disorders in humans- Thalassemia, Haemophilia, Sickle cell anaemia, cystic fibrosis, Phenylketonuria, Alkaptonuria; Chromosomal disorders- Down syndrome, Turner’s syndrome, Kleinfiltersyndrome; Genome, Human genome project, and DNA finger printing.

 

UNIT-VII:ORGANIC EVOLUTION:

Origin of Life, Biological evolution and Evidences for biological evolution (palaeontological, comparative  anatomical, embryological and molecular evidences); Theories of evolution: Lamarckism, Darwin’s theory of Evolution-Natural Selection with example (Kettlewell’s  experiments  on  Bistonbetularia), Mutation Theory of Hugo De Vries; Modern synthetic theory of Evolution - Hardy Weinberg law, Evolutionary forces, Types of Natural Selection; Gene flow and genetic drift; Variations (mutations and genetic recombination); Adaptive radiation-viz., Darwin’s finches and adaptive radiation in marsupials Human evolution; Speciation - Allopatric, sympatric; Reproductive isolation.

 

UNIT-VIII:APPLIED BIOLOGY:

Apiculture, Animal Husbandry, Pisciculture, Poultry management, Dairy management, Animal breeding, Bio-Pharmacy Technology, Diagnostic Imaging (X-ray, CT scan, MRI), ECG, EEG, Application of Biotechnology in health, Human insulin and vaccine production; Gene Therapy; Transgenic animals; ELISA; Vaccines, MABs, Cancer biology, stem cells.

DELETIONS FROM ZOOLOGY 2nd YEARINTERMEDIATE SYLLABUS:

UNIT-I:HUMAN ANATOMY AND PHYSIOLOGY-I:

I-A)Digestion and absorption: Entire Chapter Deleted.

UNIT-III: HUMAN ANATOMY AND PHYSIOLOGY-III:

 III-A) Muscular and Skeletal system: 3.2- The Skeleton, 3.3- Joints, 3.4- Disorders of Muscular and Skeletal system.

III-B) Neural control and co-ordination: 3.7- Reflex action and Reflex Arc, 3.8- Sensory Reception and Processing, 3.8.1- The Eye, 3.8.2- Mechanism of vision, 3.8.3- The Ear (The stato-Acoustic Receptor), 3.8.4- Mechanism of Hearing only (Except disorders of Human Neural system).

UNIT-VII: ORGANIC EVOLUTION:Entire Chapter Deleted.

UNIT-VIII: APPLIED BIOLOGY:8.1- Animal Husbandry, 8.2- Poultry Farm management, 8.3- Bee Keeping, 8.4- Fishery management


πŸ‘‰πŸ‘‰πŸ‘‰πŸ‘‰CLICK HERE TO DOWNLOAD PDF

AP EAPCET 2021 30% DELETED SYLLABUS BOTANY

  

Note: Deleted topics are mentioned red in colour for easy understanding. 

πŸ‘‰πŸ‘‰πŸ‘‰πŸ‘‰CLICK HERE TO DOWNLOAD PDF

SUBJECT: BOTANY

Botany-I: Intermediate First Year

 

UNIT-I:DIVERSITY IN THE LIVING WORLD:

1.      The living world: What is living? Diversity in the living world; Taxonomic categories and taxonomical aids.

2.      Biological Classification: Five kingdom classification - Monera, Protista, Fungi, Plantae and Animalia, Three domains of life (six kingdom classification), Viruses, Viroids, Prions & Lichens. 

3.      Science of plants– Botany: Origin, Development, Scope of Botany and Branches of Botany. 

4.      Plant Kingdom: Salient features, classification and alternation of generations of the plants of the following groups - Algae, Bryophytes, Pteridophytes, Gymnosperms and Angiosperms.

πŸ‘‡πŸ‘‡Click on below image to install our app and practice mock tests. πŸ‘‡



 








 

UNIT-II: STRUCTURAL ORGANISATION IN PLANTS- MORPHOLOGY:

5.      Morphology of flowering Plants: Vegetative: Parts of a typical Angiospermic plant; Vegetative morphology and modifications- Root, Stem and Leaf- types; Venation, Phyllotaxy.Reproductive: Inflorescence - Racemose, Cymose and special types (in brief). Flower: Parts of a flower and their detailed description; Aestivation, Placentation. Fruits: Types- True, False and parthenocarpic fruits.

 

UNIT-III: REPRODUCTION IN PLANTS:

6.      Modes of Reproduction: A sexual reproduction, binary fission, Sporulation, budding, fragmentation, vegetative propagation in plants, Sexual reproduction-in brief, Overview of angiosperm life cycle.

7.      Sexual Reproduction in Flowering Plants: Stamen, microsporangium, pollen grain. Pistil, megasporangium (ovule) and embryo sac; Development of male and female gametophytes.

Pollination - Types, agents, Out breeding devices and Pollen - Pistil interaction. Double Fertilization; Post fertilisation events: Development of endosperm and embryo; development of seed, Structure of Dicotyledonous and Monocotyledonous seeds, Significance of fruit and seed. Special modes - Apomixis, parthenocarpy, polyembryony.


 

UNIT-IV:PLANT SYSTEMATICS:

8.      Taxonomy of angiosperms: Introduction. Types of Systems of classification (In brief). Semi- Technical description of a typical flowering plant. Description of Families: Fabaceae, Solanaceae and Liliaceae.

 

UNIT-V:CELL STRUCTURE AND FUNCTION:

9.      Cell- The Unit of Life: Cell- Cell theory and cell as the basic unit of life- overview of the cell. Prokaryotic and Eukoryotic cells, Ultra Structure of Plant cell (structure in detail and functions in brief), Cell membrane, Cell wall, Cell organelles: Endoplasmic reticulum, Mitochondria, Plastids, Ribosomes, Golgi bodies, Vacuoles, Lysosomes, Microbodies, Centrosome and Centriole, Cilia, Flagella, Cytoskeleton and Nucleus. Chromosomes: Number, structural organization; Nucleosome.

10.  Biomolecules: Structure and function of Proteins, Carbohydrates, Lipids and Nucleic acids. 

11.  Cell cycle and Cell Division: Cell cycle, Mitosis, Meiosis - significance.

 

UNIT-VI:INTERNAL ORGANISATION OF PLANTS:

12.  Histology and Anatomy of Flowering Plants: Tissues - Types, structure and functions: Meristematic; Permanent tissues - Simple and Complex tissues. Tissue systems - Types, structure and function: Epidermal, Ground and Vascular tissue systems. Anatomy of Dicotyledonous and Monocotyledonous plants - Root, Stem and Leaf. Secondary growth in Dicot stem and Dicot root.

UNIT-VII:PLANT ECOLOGY:

13.  Ecological Adaptations, Succession and Ecological Services: Introduction. Plant communities and Ecological adaptations: Hydrophytes, Mesophytes and Xerophytes. Plant succession. Ecological services-Carbon fixation, Oxygen release and pollination (in brief).

 πŸ‘‡πŸ‘‡Click on below image to install our app and practice mock tests. πŸ‘‡



 








Botany-II: Intermediate Second Year

UNIT-I:PLANT PHYSIOLOGY

1.                   Transport in Plants: Means of Transport- Diffusion, Facilitated Diffusion, Passive  symports  and  antiports,  Active Transport, Comparison of Different Transport Processes, Plant-Water Relations- Water Potential, Osmosis, Plasmolysis, Imbibition, Long Distance Transport of Water- Water

Movement up a Plant, Root Pressure, Transpiration pull, Transpiration- Opening and Closing of 

Stomata, Transpiration  and  Photosynthesis - a compromise Uptake and Transport of Mineral Nutrients- Uptake of Mineral Ions, Translocation of Mineral Ions, Phloem transport: Flow from Source to Sink-The Pressure Flow or Mass Flow Hypothesis. 

2.                   Mineral Nutrition: Methods to Study the Mineral Requirements of Plants, Essential Mineral Elements-Criteria for Essentiality, Macronutrients, Micronutrients, Role of Macro- and Micronutrients, Deficiency Symptoms of Essential Elements, Toxicity of Micronutrients, Mechanism of Absorption of Elements, Translocation of Solutes, Soil as Reservoir of Essential Elements, Metabolism of Nitrogen-Nitrogen Cycle, Biological Nitrogen Fixation, Symbiotic nitrogen fixation, Nodule Formation. 

3.                   Enzymes: Chemical Reactions, Enzymatic Conversions, Nature of Enzyme Action, Factors   Affecting   Enzyme   Activity, Temperature    and    pH, Concentration of Substrate, Classification and Nomenclature of Enzymes, Co-factors. 

4.                   Photosynthesis in Higher Plants: Early Experiments, Site of Photosynthesis, Pigments Involved in Photosynthesis, Light Reaction, The Electron Transport-Splitting of Water, Cyclic and Noncyclic Photo-phosphorylation, Chemiosmotic Hypothesis, Biosynthetic phase- The Primary Acceptor of CO2, The Calvin Cycle, The C4 Pathway, Photorespiration, Factors affecting Photosynthesis. 

5.                   Respiration of Plants: Cellular respiration, Glycolysis, Fermentation, Aerobic Respiration - Tricarboxylic Acid Cycle, Electron Transport System (ETS) and Oxidative Phosphorylation, The Respiratory Balance Sheet, Amphibolic Pathway, Respiratory Quotient.  

6.                   Plant Growth and Development: Growth- Plant Growth, Phases of Growth, Growth Rates, Conditions for Growth, Differentiation, Dedifferentiation and Redifferentiation, Development, Plant Growth Regulators- Discovery, PhysiologicalEffectsofPlant Growth Regulators, Auxins,Gibberellins, Cytokinins, Ethylene, Abscisic acid, Seed Dormancy, Photoperiodism, Vernalisation

 

UNIT-II:MICROBIOLOGY:

7.                   Bacteria: Morphology of Bacteria, Bacterial cell structure - Nutrition, Reproduction-Sexual Reproduction, Conjugation, Transformation, Transduction, The importance of Bacteria to Humans. 

8.                   Viruses: Discovery, Classification of Viruses, structure of Viruses, Multiplication of Bacteriophages – The lytic cycle, The Lysogenic Cycle, Viral diseases in Plants, Viral diseases in Humans.

 

UNIT-III:GENETICS:

9.                   Principles of Inheritance and Variation: Mendel’s Experiments, Inheritance of one  gene (Monohybrid  Cross)-Back cross and Test cross, Law of Dominance, Law of Segregation or  Law  of  purity  of  gametes,  Deviations from Mendelian concept of dominance - Incomplete Dominance, Codominance, Explanation of the concept of dominance, Inheritance of two genes- Law of Independent

Assortment, Chromosomal Theory of Inheritance, Linkage and Recombination, Mutations, Significance of mutations.

UNIT-IV:MOLECULAR BIOLOGY:

10.               Molecular Basis of inheritance: The DNA- Structure of Polynucleotide Chain, Packaging of DNA-Helix. The  Search for Genetic Material, Transforming Principle, Biochemical Characterisation of Transforming Principle, The Genetic Material is DNA, Properties of Genetic Material (DNA versus RNA), RNA World, Replication - The Experimental Proof, The Machinery and the Enzymes, Transcription-Transcription Unit, Transcription Unit and the Gene, Types of RNA and the process of Transcription, Genetic Code-Mutations and Genetic Code,  tRNA- the Adapter Molecule, Translation, Regulation of Gene Expression-The Lac operon.

 

UNIT-V:BIOTECHNOLOGY

11.               Principles and processes of Biotechnology: Principles of Biotechnology-Construction of the first artificial recombinant DNA molecule, Tools of Recombinant DNA Technology-Restriction Enzymes, Cloning Vectors, Competent Host (For Transformation with Recombinant DNA), Processes of

Recombinant DNA Technology- Isolation of the  Genetic  Material (DNA), Cutting  of  DNA  at  Specific  Locations,  Separation  and isolation of DNA fragments, Insertion of isolated gene into a suitable vector, Amplification of Gene of Interest using PCR, Insertion of Recombinant DNA into the Host, Cell/Organism,  Selection  of   Transformed   host   cells, Obtaining   the Foreign Gene   Product, Downstream Processing. 

12.               Biotechnology and its applications: Biotechnological Applications in Agriculture-Bt Cotton, Pest Resistant Plants, Other applications of Biotechnology - Insulin, Gene therapy, Molecular Diagnosis, ELISA, DNA fingerprinting, Transgenic plants, Bio-safety and Ethical issues- Biopiracy.

 

UNIT-VI:PLANTS, MICROBES AND HUMAN WELFARE:

13.               Strategies for enhancement in food production: Plant Breeding- What is Plant Breeding? Wheat and Rice, Sugarcane, Millets, Plant Breeding for Disease Resistance, Methods of breeding for disease resistance, Mutation, Plant Breeding for Developing Resistance to Insect Pests, Plant Breeding for Improved Food Quality, Single Cell Protein (SCP), Tissue Culture.

πŸ‘‡πŸ‘‡Click on below image to install our app and practice mock tests. πŸ‘‡



 









14.               Microbes in Human Welfare: Microbes in Household Products, Microbes in Industrial ProductsFermented Beverages, Antibiotics, Chemicals, Enzymes and other Bioactive Molecules,Microbes in Sewage Treatment, Primary treatment, Secondary treatment or Biological treatment, Microbes in Production of Biogas, Microbes as Biocontrol Agents, Biological control of pests and diseases, Microbes as Biofertilisers, Challenges posed by Microbes.

 

DELETIONS FROM BOTANY 2nd YEAR INTERMEDIATESYLLABUS:

2. Mineral Nutrition: Entire Chapter Deleted. 

6. Plant Growth and Development: 6.1: Growth, 6.2: Differentiation, De-differentiate and Redifferentiation, 6.3: Development, 6.5: Seed dormancy, 6.6: Photo-periodism, 6.7: Vernalisation.

13. Strategies for enhancement in food production: 13.1.2: Plant breeding for disease resistance, 13.1.3: Plant breeding for developing resistance to insect pests, 13.1.4: Plant breeding for improve feed Quality, 13.2: Single cell Proteins (SCP)

πŸ‘‰πŸ‘‰πŸ‘‰πŸ‘‰CLICK HERE TO DOWNLOAD PDF

AP EAPCET 2021 30% DELETED SYLLABUS CHEMISTRY



Note: Deleted topics are mentioned red in colour for easy understanding. 

πŸ‘‰πŸ‘‰πŸ‘‰πŸ‘‰CLICK HERE TO DOWNLOAD PDF

SUBJECT: CHEMISTRY

Chemistry-I: Intermediate First Year

 

1.    ATOMIC STRUCTURE: Sub- atomic particles; Atomic models –Rutherford’s Nuclear model of atom; Developments to the Bohr’s model of atom; Nature of electromagnetic radiation; Particle nature of electromagnetic radiation- Planck’s quantum theory; Bohr’s model for Hydrogen atom; Explanation of line spectrum of hydrogen; Limitations of Bohr’s model; Quantum mechanical considerations of sub atomic particles; Dual behaviour of matter; Heisenberg’s uncertainty principle; Quantum mechanical model of an atom. Important features of Quantum mechanical model of atom; Orbitals and quantum numbers; Shapes of atomic orbitals; Energies of orbitals; Filling of orbitals in atoms. Aufbau Principle, Pauli’s exclusion Principle and Hund’s rule of maximum multiplicity; Electronic configurations of atoms; Stability of half-filled and completely filled orbitals. 

 πŸ‘‡πŸ‘‡Click on below image to install our app and practice mock tests. πŸ‘‡



 









2.    CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES: Need to classify elements; Genesis of periodic classification; Modern periodic law and present form of the periodic table; Nomenclature of elements with atomic number greater than 100; Electronic configuration of elements and  the periodic table; Electronic configuration and types of elements s,p,d. and f blocks; Trends in physical properties:(a) Atomic radius, (b) Ionic radius (c) Variation of size in inner transition elements, (d) Ionization enthalpy,(e) Electron gain enthalpy, (f) Electro negativity; Periodic trends in chemical properties: (a) Valence or Oxidation states, (b) Anomalous properties of second period elements - diagonal relationship; Periodic trends and chemical reactivity. 

 πŸ‘‡πŸ‘‡Click on below image to install our app and practice mock tests. πŸ‘‡

 

3.    CHEMICAL BONDING AND MOLECULAR STRUCTURE: Kossel - Lewis approach to

chemical bonding, Octet rule, Representation of simple molecules, formal charges, limitations of octet rule; Ionic or electrovalent bond - Factors favourable for the formation of ionic compounds- Crystal structure of sodium chloride, General properties of ionic compounds; Bond Parameters - bond length, bond angle, and bond enthalpy, bond order, resonance-Polarity of bonds dipole moment-Fajan rules; Valence Shell Electron Pair Repulsion (VSEPR) theory; Predicting the geometry of simple molecules; Valence bond theory-Orbital overlap concept-Directional properties of bonds-overlapping of atomic orbitals-types of overlapping and nature of covalent bonds-strength of sigma and pi bonds-Factors favouring the formation of covalent bonds; Hybridisation- different types of hybridization involving s, p and d orbitals- shapes of simple covalent molecules; Coordinate bond - definition with examples; Molecular orbital theory - Formation of molecular orbitals, Linear combination of atomic orbitals (LCAO)-conditions for combination of atomic orbitals - Energy level diagrams for molecular orbitals -Bonding in some homo nuclear diatomic molecules- H2, He2, Li2, B2, C2, N2 and O2; Hydrogen bonding-cause of formation of hydrogen bond - Types of hydrogen bonds-inter and intra molecularGeneral properties of hydrogen bonds.

 

4.    STATES OF MATTER: GASES AND LIQUIDS: Intermolecular forces; Thermal Energy;

Intermolecular forces Vs Thermal interactions; The Gaseous State; The Gas Laws; Ideal gas equation;

Graham’s law of diffusion - Dalton’s Law of partial pressures; Kinetic molecular theory of gases; Kinetic gas equation of an ideal gas (No derivation) deduction of gas laws from Kinetic gas equation; Distribution of molecular speeds - rms, average and most probable speeds-Kinetic energy of gas molecules; Behaviour of real gases - Deviation from Ideal gas behaviour - Compressibility factor Vs Pressure diagrams of real gases; Liquefaction of gases; Liquid State - Properties of Liquids in terms of Inter molecular interactions - Vapour pressure, Viscosity and Surface tension (Qualitative idea only. No mathematical derivation).

 

5.    STOICHIOMETRY: Some Basic Concepts - Properties of matter - uncertainty in Measurementsignificant figures, dimensional analysis; Laws of Chemical Combinations - Law of Conservation of Mass, Law of Definite Proportions, Law of Multiple Proportions, Gay Lussac’s Law of Gaseous Volumes, Dalton’s Atomic Theory, Avogadro Law, Examples; Atomic and molecular masses- mole concept and molar mass. Concept of equivalent weight; Percentage composition of compounds and calculations of empirical and molecular formulae of compounds; Stoichiometry and stoichiometric calculations-limiting reagent; Methods of Expressing concentrations of solutions-mass percent, mole fraction, molarity, molality and normality; Redox reactions-classical idea of redox reactions, oxidation and reduction reactions-redox reactions in terms of electron transfer; Oxidation number concept; Types of Redox reactions- combination, decomposition, displacement and disproportionation reactions; Balancing of redox reactions - oxidation number method Half reaction (ion-electron) method; Redox reactions in Titrimetry.

 

6.    THERMODYNAMICS: Thermodynamic Terms; The system and the surroundings; Types of systems and surroundings; The state of the system; The Internal Energy as a State Function. (a) Work (b) Heat (c) The general case, the first law of Thermodynamics; Applications; Work; Enthalpy, H- a useful new state function; Extensive and intensive properties; Heat capacity; The relationship between Cp and Cv; Measurement of U and H: Calorimetry; Enthalpy change, rH of reactions - reaction Enthalpy (a) Standard enthalpy of reactions, (b) Enthalpy changes during transformations, (c) Standard enthalpy of formation, (d) Thermo chemical equations (e) Hess’s law of constant Heat summation; Enthalpies for different types of reactions. (a) Standard enthalpy of combustion (∆cH),

(b) Enthalpy of atomization (∆aH), phase transition, sublimation and ionization, (c) Bond Enthalpy

(∆bondH), (d) Enthalpy of solution (∆solH) and dilution-lattice enthalpy; Spontaneity. (a) Is decrease in enthalpy a criterion for spontaneity? (b) Entropy and spontaneity, the second law of thermodynamics, (c) Gibbs Energy and spontaneity; Gibbs Energy change and equilibrium; Absolute entropy and the third law ofthermodynamics.

  πŸ‘‡πŸ‘‡Click on below image to install our app and practice mock tests. πŸ‘‡

 

7.         CHEMICAL EQUILIBRIUM AND ACIDS-BASES: Equilibrium in Physical process; Equilibrium in chemical process - Dynamic Equilibrium; Law of chemical Equilibrium - Law of mass action and Equilibrium constant; Homogeneous Equilibria, Equilibrium constant in gaseous systems. Relationship between KP and Kc; Heterogeneous Equilibria; Applications of Equilibrium constant; Relationship between Equilibrium constant K, reaction quotient Q and Gibbs energy G; Factors affecting Equilibria.-Le-chatlier principle application to industrial synthesis of Ammonia and Sulphur trioxide; Ionic Equilibrium in solutions; Acids, bases and salts- Arrhenius, Bronsted-Lowry and Lewis concepts of acids and bases; Ionisation of Acids and Bases - Ionisation constant of water and its ionic product- pH scale-ionisation constants of weak acids-ionisation of weak bases-relation between Ka and Kb-Di and poly basic acids and di and poly acidic Bases-Factors affecting acid strength- Common ion effect in the ionization of acids and bases-Hydrolysis of salts and pH of their solutions; Buffer solutions- designing of buffer solution-Preparation of Acidic buffer; Solubility Equilibria of sparingly soluble salts. Solubility product constant Common ion effect on solubility of Ionic salts.

 

8.         HYDROGEN AND ITS COMPOUNDS: Position of hydrogen in the periodic table; DihydrogenOccurrence and Isotopes; Preparation of Dihydrogen; Properties of Dihydrogen; Hydrides: Ionic, covalent, and non-stoichiometric hydrides; Water: Physical properties; structure of water, ice. Chemical properties of water; hard and soft water, Temporary and permanent hardness of water; Hydrogen peroxide: Preparation; Physical properties; structure and chemical properties; storage and uses; Heavy Water; Hydrogen as a fuel.

 

9.         THE s - BLOCK ELEMENTS (ALKALI AND ALKALINE EARTH METALS):

Group 1 Elements : Alkali metals; Electronic configurations; Atomic and Ionic radii; Ionization enthalpy; Hydration enthalpy; Physical properties; Chemical properties; Uses; General characteristics of the compounds of the alkali metals: Oxides; Halides; Salts of oxo Acids; Anomalous properties of Lithium: Differences and similarities with other alkali metals, Diagonal relationship; similarities between Lithium and Magnesium; Some important compounds of Sodium: Sodium Carbonate; Sodium Chloride; Sodium Hydroxide; Sodium hydrogen carbonate;  Biological importance of Sodium andPotassium.

Group 2 Elements: Alkaline earth elements; Electronic configuration; Ionization enthalpy; Hydration enthalpy; Physical properties, Chemical properties; Uses; General characteristics of compounds of the Alkaline Earth Metals: Oxides, hydroxides, halides, salts of oxoacids (Carbonates; Sulphates and Nitrates); Anomalous behavior of Beryllium; its diagonal relationship with Aluminium; Some important compounds of calcium: Preparation and uses of Calcium Oxide; Calcium Hydroxide; Calcium Carbonate; Plaster of Paris; Cement; Biological importance of Calcium andMagnesium.

 

10.      p- BLOCK ELEMENTS GROUP 13 (BORON FAMILY): General introduction - Electronic configuration, Atomic radii, Ionization enthalpy, Electro negativity; Physical & Chemical properties; Important trends and anomalous properties of boron; Some important compounds of boron - Borax, Ortho boric acid, diborane; Uses of boron, aluminium and their compounds.

 

11.      p-BLOCK ELEMENTS - GROUP 14 (CARBON FAMILY): General introduction - Electronic configuration, Atomic radii, Ionization enthalpy, Electro negativity; Physical & Chemical properties; Important trends and anomalous properties of carbon; Allotropes of carbon; Uses of carbon; Some important compounds of carbon and silicon - carbon monoxide, carbon dioxide, Silica, silicones, silicates and zeolites.

 

12.      ENVIRONMENTAL CHEMISTRY: Definition of terms: Air, Water and Soil Pollutions; Environmental Pollution; Atmospheric pollution; Tropospheric Pollution; Gaseous Air Pollutants (Oxides of Sulphur; Oxides of Nitrogen; Hydrocarbons; Oxides of Carbon (CO, CO2). Global warming and Greenhouse effect; Acid Rain- Particulate Pollutants- Smog; Stratospheric Pollution: Formation and breakdown of Ozone- Ozone hole- effects of depletion of the Ozone Layer; Water Pollution: Causes of Water Pollution; International standards for drinking water; Soil Pollution: Pesticides, Industrial Wastes; Strategies to control environmental pollution- waste Management- collection and disposal; Green Chemistry: Green chemistry in day-to-day life; Dry cleaning of clothes; Bleaching of paper; Synthesis ofchemicals.

 

13.      ORGANIC CHEMISTRY-SOME BASIC PRINCIPLES AND TECHNIQUES AND

HYDROCARBONS: General introduction; Tetravalency of Carbon: shapes of organic compounds; Structural representations of organic compounds; Classification of organic compounds; Nomenclature of organic compounds; Isomerism; Fundamental concepts in organic reaction mechanisms; Fission of covalent bond; Nucleophiles and electrophiles; Electron movements in organic reactions; Electron displacement effects in covalent bonds: inductive effect, resonance, resonance effect, electromeric effect, hyper conjugation; Types of Organic reactions; Methods of purification of organic compounds; Qualitative elemental analysis of organic compounds; Quantitative elemental analysis of  organiccompounds.

Hydrocarbons: Classification of Hydrocarbons; Alkanes - Nomenclature, isomerism (structural and conformations of ethane only); Preparation of alkanes; Properties - Physical properties and chemical Reactivity, Substitution reactions – Halogenation (free radical mechanism), Combustion, Controlled Oxidation, Isomerisation, Aromatization, reaction with steam and Pyrolysis; Alkenes- Nomenclature, structure of ethene, Isomerism (structural and geometrical); Methods of preparation; Properties- Physical and chemical reactions: Addition of Hydrogen, halogen, water, sulphuric acid, Hydrogen halides (Mechanism- ionic and peroxide effect, Markovnikov’s, anti-Markovnikov’s or Kharasch effect). Oxidation, Ozonolysis and Polymerization; Alkynes - Nomenclature and isomerism, structure of acetylene. Methods of preparation of acetylene; Physical properties, Chemical reactions- acidic character of acetylene, addition reactions- of hydrogen, Halogen, Hydrogen halides and water. Polymerization; Aromatic Hydrocarbons: Nomenclature and isomerism, Structure of benzene, Resonance and aromaticity; Preparation of benzene. Physical properties. Chemical properties:

Mechanism of electrophilic substitution. Electrophilic substitution reactions- Nitration, Sulphonation, Halogenation, Friedel-Craft’ alkylation and acylation; Directive influence of functional groups in mono substituted benzene, Carcinogenicity andtoxicity.

 

Chemistry-II: Intermediate Second Year

 

1.  SOLID STATE: General characteristics of solid state; Amorphous and crystalline solids; Classification of crystallinesolids based on different binding forces (molecular, ionic, metallic and covalent solids); Probing the structure of solids: X-ray crystallography; Crystal lattices and unit cells. Bravais  lattices   primitive   and centered unit cells; Number of atoms in a unit cell (primitive, body centered and face centered cubic unit  cell); Close  packed structures: Close packing in  one dimension, in two dimensions and in three dimensions- tetrahedral and octahedral voids- formula of a compound and number of voids filled- locating tetrahedral and  octahedral voids;  Packing  efficiency  in  simple cubic, bcc and in hcp, ccp lattice; Calculations involving  unit  cell  dimensions-density of the unit cell; Imperfections in solids-types of point defects-stoichiometric and non-stoichiometric defects; Electrical properties-conduction of electricity in metals, semiconductors and insulators- band theory of metals; Magnetic properties.

  πŸ‘‡πŸ‘‡Click on below image to install our app and practice mock tests. πŸ‘‡

 

2.  SOLUTIONS: Types of solutions; Expressing concentration of solutions - mass percentage, volume percentage, mass by volume percentage, parts per million, mole fraction, molarity and molality; Solubility: Solubility of a solid in a liquid, solubility of a gas in a liquid, Henry’s law; Vapour pressure of liquid solutions: vapour pressure of liquid- liquid solutions. Raoult’s law as a special case of Henry’s law -vapour pressure of solutions of solids in liquids; Ideal and non-ideal solutions; Colligative properties and determination of molar mass-relative lowering of vapour pressure- elevation of boiling point-depression of freezing point-osmosis and osmotic pressurereverse osmosis and water purification; Abnormal molar masses-van’t Hoff factor.

 

3.  ELECTROCHEMISTRY AND CHEMICAL KINETICS:

Electrochemistry: Electrochemical cells; Galvanic cells: measurement of electrode potentials; Nernst equation- equilibrium constant from Nernst equation- electrochemical cell and Gibbs energy of the cell reaction; Conductance of electrolytic solutions- measurement of the conductivity of ionic solutions-variation of conductivity and molar conductivity with concentration-strong electrolytes and weak electrolytes-applications of Kohlrausch’s law; Electrolytic cells and electrolysis: Faraday’s laws of  electrolysis-products  of  electrolysis;  Batteries:  primary batteries and secondary batteries; Fuel cells; Corrosion of metals-Hydrogen economy.

Chemical Kinetics: Rate of a chemical reaction; Factors influencing rate of a reaction: dependence of rate on concentration- rate expression and rate constant- order of a reaction, molecularity of a reaction; Integrated rate equations-zero order reactions-first order reactions- half-life of a reaction; Pseudo first order  reaction;  Temperature dependence of the rate of a reaction -effect of catalyst; Collision theory of chemical reaction rates.

 

4.  SURFACE CHEMISTRY: Adsorption : Distinction between adsorption and absorptionmechanism of adsorption-types of adsorption- characteristics of physisorption-characteristics of chemisorption-adsorption isotherms-adsorption from solution phase-applications of adsorption; Catalysis: Catalysts, promoters and poisons-auto catalysis- homogeneous and heterogeneous catalysis-adsorption theory of heterogeneous catalysis-important features of solid catalysts: (a)activity (b)selectivity-shape-selective catalysis by zeolites-enzyme catalysis-characteristics and mechanism- catalysts in industry; Colloids; Classification of colloids: Classification based on physical state of dispersed phase and dispersion medium- classification based on nature of interaction between dispersed phase and dispersion medium- classification based on type of particles of the dispersed phase- multi molecular, macromolecular and associated colloids- cleansing action of soapspreparation  of  colloids-purification  of  colloidal  solutions-properties  of colloidal solutions: Colligative properties, Tyndal effect, colour, Brownian movement-charge on colloidal particles, electrophoresis; coagulation-precipitation methods-coagulation of lyophilic sols and protection of colloids- Emulsions; Colloids around us- application of colloids.

 

5.  GENERAL PRINCIPLES OF METALLURGY: Occurrence of metals; Concentration of ores- levigation, magnetic separation, froth floatation, leaching;  Extraction  of crude metal from concentrated ore-conversion to oxide, reduction of oxide to the metal; Thermodynamic principles of metallurgy – Ellingham diagram-limitations-applications-extraction of iron, copper and zinc from their oxides; Electrochemical principles of metallurgy; Oxidation and reduction; Refining of crude metal-distillation, liquation poling, electrolytic refining, zone refining and vapour phase refining; Uses of aluminium, copper, zinc and iron.

 

 

6.  p-BLOCK ELEMENTS:

Group-15 Elements: Occurrence- electronic configuration, atomic and ionic radii, ionisation enthalpy, electronegativity, physical and chemical properties; Dinitrogen-preparation, properties and uses; Compounds of nitrogen-preparation, properties and uses of ammonia; Oxides of nitrogen; Preparation and properties of nitric acid; Phosphorous-allotropic forms; Phosphine-preparation, properties and uses; Phosphorous halides; Oxoacids of phosphorous

Group-16 Elements: Occurrence- electronic configuration, atomic and ionic radii, ionisation enthalpy, electron gain  enthalpy, electronegativity, physical and chemical properties; Dioxygenpreparation, properties and uses;  Simple    oxides; Ozone-preparation, properties, structure    and uses; Sulphur-allotropic forms; Sulphur dioxide-preparation, properties and uses; Oxoacids of sulphur; Sulphuric acid- manufacture, properties anduses.

Group-17 Elements: Occurrence, electronic configuration, atomic and ionic radii, ionisation enthalpy, electron gain enthalpy, electro negativity, physical and chemical properties; Chlorine- preparation, properties and uses; Hydrogen chloride- preparation, properties and uses; Oxoacids of halogens; Interhalogen compounds- preparation, properties and uses.

Group-18 Elements: Occurrence, electronic configuration, ionization enthalpy, atomic radii, electron gain enthalpy, physical and chemical properties(a) Xenon-fluorine compounds- XeF2,XeF4 and XeF6 preparation, hydrolysis and formation of fluoro anions-structures of XeF2, XeF4 and XeF6 (b) Xenonoxygen compounds XeO3 and XeOF4 - their formation and structures-uses of noblegases.

 

7. d AND f BLOCK ELEMENTS & COORDINATIONCOMPOUNDS:

d and f block elements: Position in the periodic table; Electronic configuration of the d-block elements; General properties of the transition elements (d-block) -physical properties, variation in atomic and ionic sizes of transition series, ionisation enthalpies, oxidation states, trends in the M²+/M and M³+/M²+ standard electrode potentials, trends in stability of higher oxidation states, chemical reactivity  and  EΞΈ  values,   magnetic   properties,   formation of coloured  ions,  formation  of  complex compounds, catalytic properties, formation of interstitial compounds,  alloy formation; Some important compounds of transition elements-oxides and oxoanions of metals-preparation, properties and uses of potassium dichromate and potassium permanganate-structures of chromate, dichromate, manganate and permanganate ions; Inner transition elements(f-block)-lanthanoids- electronic configuration-atomic and ionic sizes-oxidation states- general characteristics; Actinoids-electronic configuration atomic and ionic sizes, oxidation states, general characteristics and comparison with lanthanoids; Some applications of d and f block elements.

Coordination compounds: Werner’s theory of coordination compounds; Definitions of some terms used in coordination compounds; Nomenclature of coordination compounds-IUPAC nomenclature; Isomerism in coordination compounds- (a)Stereo Isomerism-Geometrical and optical isomerism (b)Structural isomerism-linkage, coordination, ionisation and hydrate isomerism; Bonding in coordination compounds. (a)Valence bond theory - magnetic properties of coordination compoundslimitations of valence bond theory (b) Crystal field theory (i) Crystal field splitting in octahedral and tetrahedral coordination entities (ii) Colour in coordination compounds- limitations of crystal field theory; Bonding in metal carbonyls; Stability of coordination compounds; Importance and applications of coordinationcompounds.

  πŸ‘‡πŸ‘‡Click on below image to install our app and practice mock tests. πŸ‘‡

 

8.               POLYMERS: Classification  of  Polymers  -Classification  based  on  source,  structure,  mode  of   polymerization,   molecular forces and growth polymerization; Types of polymerization reactionsaddition polymerization or chain growth polymerization-ionic polymerization, free radical mechanism-preparation of addition polymers-polythene, teflon  and polyacrylonitrile-condensation polymerization or  step  growth  polymerization-polyamides-preparation  of Nylon 6,6 and nylon 6poly esters-terylene-bakelite, melamine-formaldehyde polymers; copolymerization- Rubber- natural rubber-vulcanisation of rubber-Synthetic rubbers-preparation of neoprene and buna-N; Molecular mass of polymers-number average and weight average molecular masses- poly dispersity index(PDI); Biodegradable polymers-PHBV, Nylon 2-nylon 6; Polymers of commercial importance-polypropene, polystyrene, polyvinylchloride (PVC), urea-formaldehyde resin, glyptal and bakelite - their monomers, structures and uses.

 

9.               BIOMOLECULES: Carbohydrates - Classification of carbohydrates- Monosaccharides: preparation of glucose from  sucrose  and  starch- Properties and structure of glucose- D,L configurations and (+), (-) notations  of  glucose-Structure  of fructose; Disaccharides: Sucrose- preparation, structure; Invert sugar- Structures of maltose and lactose- Polysaccharides: Structures of starch, cellulose  and  glycogen-  Importance  of  carbohydrates;  Proteins- Aminoacids: Natural aminoacids-classification of aminoacids - structures and D and L forms-Zwitter ions; Proteins: Structures, classification, fibrous and globular- primary, secondary, tertiary and quarternary structures of proteins- Denaturation of proteins; Enzymes: Enzymes, mechanism of enzyme action; Vitamins: Explanation-names- classification of vitamins - sources of vitamins-deficiency diseases of different types of vitamins; Nucleic acids: chemical composition of nucleic acids, structures of nucleic acids, DNA finger  printing  biological  functions  of nucleic acids; Hormones: Definition, different types of hormones, their production, biological activity, diseases due to their abnormal activities.

 

10.            CHEMISTRY IN EVERYDAY LIFE: Drugs and their classification: (a) Classification of drugs on the basis of pharmacological effect (b) Classification of drugs on the basis of drug action (c) Classification of drugs on the basis of chemical structure (d) Classification of drugs on the basis of molecular targets; Drug-Target Interaction-Enzymes as drug targets (a) Catalytic action of enzymes (b) Drug-enzyme interaction, receptors as drug targets; Therapeutic action of different classes of drugs: antacids, antihistamines, neurologically active drugs: tranquilizers, analgesics-non-narcotic, narcotic analgesics, antimicrobials-antibiotics, antiseptics and disinfectants- antifertility drugs; Chemicals in food-artificial sweetening agents, food preservatives, antioxidants in food; Cleansing agents-soaps and synthetic detergents – types and examples.

 

11.            HALOALKANES AND HALOARENES: Classification and nomenclature; Nature of C-X bond; Methods of  preparation:  Alkyl  halides  and  aryl  halides-  from alcohols, from hydrocarbons (a) by free radical halogenation (b) by electrophilic substitution (c) by  replacement   of diazonium   group (Sandmeyer reaction)   (d) by the addition of hydrogen   halides   and   halogens  to alkenes-by halogen exchange reactions; Physical properties-melting and boiling points, density and solubility; Chemical reactions: Reactions of haloalkanes (i) Nucleophilic substitution reactions (a) SN² mechanism (b)SN¹ mechanism (c) stereochemical aspects of nucleophilic substitution reactionsoptical activity (ii) Elimination reactions

(iii)  Reaction with metals-Reactions of haloarenes: (i) Nucleophilic substitution (ii) Electrophilic substitution and (iii) Reaction with metals; Polyhalogen compounds: Uses and environmental effects of dichloro methane, trichloromethane triiodomethane, tetrachloro methane, freons and DDT.

 

12. ORGANIC COMPOUNDS CONTAINING C, H AND O (ALCOHOLS, PHENOLS, ETHERS, ALDEHYDES, KETONES AND CARBOXYLIC ACIDS):

Alcohols, Phenols and Ethers: Alcohols, phenols and ethers -classification; Nomenclature: (a)Alcohols, (b)phenols and (c) ethers; Structures of hydroxy and ether functional groups; Methods of preparation:  Alcohols from  alkenes  and  carbonyl  compounds, from Grignard reagents; Phenols from haloarenes, benzene sulphonic acid, diazonium salts, cumene; Physical properties of alcohols and phenols; Chemical reactions of alcohols and phenols (i) Reactions involving cleavage of O-H bond in alcohols-Acidity of alcohols and phenols, esterification (ii) Reactions involving cleavage of

C- O bond- reactions with HX, PX3, dehydration and oxidation (iii) Reactions of phenols- electrophilic aromatic substitution, Kolbe’s reaction, Reimer - Tiemann reaction, reaction with zinc dust, oxidation; Commercially  important alcohols (methanol, ethanol); Ethers-Methods of preparation: By dehydration of alcohols, Williamson synthesis- Physical properties-Chemical reactions: Cleavage of  C-O  bond  and  electrophilic  substitution  of  aromatic ethers(anisole). Aldehydes and Ketones: Nomenclature and structure of carbonyl group; Preparation of  aldehydes  and  ketones-(1)  by  oxidation  of  alcohols (2) by dehydrogenation of alcohols (3) from hydrocarbons -Preparation of aldehydes (1)  from  acyl  chlorides (2) from nitriles and esters(3) from hydrocarbons-Preparation of ketones(1) from acyl chlorides (2)from nitriles (3)from benzene or substituted benzenes; Physical properties of aldehydes and ketones; Chemical reactions of aldehydes and ketones-nucleophilic addition, reduction, oxidation, reactions due toΞ±-

Hydrogen and other reactions (Cannizzaro reaction, electrophilic substitution reaction); Uses of aldehydes and ketones.

Carboxylic acids: Nomenclature and structure of carboxylgroup; Methods of preparation of  carboxylic  acids  (1)from  primary alcohols  and  aldehydes  (2)  from  alkylbenzenes(3)from  nitriles  and amides (4)from Grignard reagents (5) from acyl halides and anhydrides (6) from esters; Physical properties; Chemical  reactions:  (i)  Reactions  involving cleavage of O-H bond-acidity, reactions with metals and alkalies (ii) Reactions involving cleavage of C-OH bond- formation of anhydride, reactions with PCl5, PCl3, SOCl2, esterification and reaction with ammonia (iii) Reactions involvingCOOH group-reduction, decarboxylation (iv) Substitution reactions in the  hydrocarbon  part  - halogenation and ring substitution; Uses of carboxylicacids.

 

13. ORGANIC COMPOUNDS CONTAINING NITROGEN:

Amines: Structure of amines; Classification; Nomenclature; Preparation of amines: reduction of nitro compounds, ammonolysis of alkyl halides, reduction of nitriles, reduction of amides, Gabriel phthalimide synthesis and Hoffmann bromamide degradation reaction; Physical properties; Chemical reactions: basic character of amines, alkylation, acylation, carbyl amine reaction, reaction with nitrous acid, reaction with aryl sulphonyl chloride, electrophilic substitution of aromatic amines (aniline)bromination, nitration and sulphonation.

Diazonium Salts: Methods of preparation of diazonium salts (by diazotization) Physical properties; Chemical reactions: Reactions involving displacement of Nitrogen; Sandmeyer reaction, Gatterman reaction, replacement by i) iodiode and fluoride ions ii) hydrogen, hydroxyl and Nitro groups; reactions involving retention of diazo group; coupling reactions; Importance of diazonium salts in synthesis of aromatic compounds.

 πŸ‘‡πŸ‘‡Click on below image to install our app and practice mock tests. πŸ‘‡

 

Cyanides and Isocyanides:

Structure and nomenclature of cyanides and isocyanides; Preparation, physical properties and chemical reactions of cyanides and isocyanide

 

DELETIONS FROM CHEMISTRY 2nd YEAR INTERMEDIATE SYLLABUS:

1.        SOLID STATE: (1.11) Electrical properties. (1.12) Magnetic properties

 

2.        SOLUTIONS: (2.7) Abnormal molar masses

 

3.        ELECTROCHEMISTRY AND CHEMICAL KINETICS:

          Electrochemistry: (3.6) Batteries, (3.7) Fuel cells, (3.8) Corrosion         Chemical Kinetics: (3.14) Collision theory of chemical reaction rates.

 

4.        SURFACE CHEMISTRY: (4.2) Catalysis, (4.5) Emulsions

 

5.        GENERAL PRINCIPLES OF METALLURGY: Entire Chapter Deleted.

 

6.        p-BLOCK ELEMENTS:

Group-15 Elements: (6.4) Oxides of Nitrogen- structures only. (6.6) Phosphorus allotropic forms. (6.7) Preparation & Properties of Phosphene. (6.8) Preparation & Properties of and (6.9)

Phosphorus Halides & Oxo-acids (elementary idea only) 

Group-16 Elements: (6.17) Sulphuric acid – Industrial process of manufacture

 

7.        d AND f BLOCK ELEMENTS & COORDINATIONCOMPOUNDS: (7.4) Some important

Compounds of Transition elements (Preparation & Properties of KMnO4 and K2Cr2O7) (7.5) Chemical reactivity of Lanthanoids (7.6) Actinoids – Electronic configuration, Oxidation states and Comparison with Lanthanoids (7.11) Isomerism in Co-ordination Compounds (7.15) Importance of Co-ordination Compounds

 

8.        POLYMERS: Entire Chapter Deleted.

 

9.        BIOMOLECULES: (9.1) –(i) Sucrose, lactose, maltose importance Polysaccharides (starch, carbohydrates) importance (9.3) Enzymes (9.6) Harmones

 

10.     CHEMISTRY IN EVERYDAY LIFE: Entire Chapter Deleted.

 

11.     HALOALKANES AND HALOARENES: (11.6) Poly Halogen Compounds.

 

12.     ORGANIC COMPOUNDS CONTAINING C, H AND O (ALCOHOLS, PHENOLS,

ETHERS, ALDEHYDES, KETONES

AND CARBOXYLIC ACIDS):(12.7) Some Commercially important alcohols

 

13.     ORGANIC COMPOUNDS CONTAINING NITROGEN: Entire Chapter Deleted.


πŸ‘‰πŸ‘‰πŸ‘‰πŸ‘‰CLICK HERE TO DOWNLOAD PDF